Patent attributes
An automated method of predictive model development first cleans up raw supervised and unsupervised training data with a step that uses an algorithm to make every field of every record consistent, cohesive, and productive. Then the resulting flat data is given texture in a next step by a data enrichment algorithm that culls fields that do not contribute to predictive model building and that adds new fields computed from data combinations that are tested to add value to later steps that build different types of predictive models. Another late step for building smart-agents and their entity profiles uses another algorithm that benefits greatly from the cleaned and highly enriched training data. The predictive models and smart-agents and their entity profiles are then rendered as deliverable predictive model markup language documents in a final step executed by a specialized algorithm.