A multi-rotor aircraft includes a fuselage, a propulsion engine coupled to the fuselage that generates thnist to propel the aircraft along a first vector during forward flight, and rotors coupled to the fuselage, each rotor comprising blades, each rotor coupled to a motor, and each motor configured to supply power to and draw power from the coupled rotor. The aircraft includes a flight control system configured to control the motors coupled to the rotors in a power managed regime in which a net electrical power, consisting of a sum of the power being supplied to or drawn from each rotor by its motor, is maintained within a range determined by a feedback control system of the flight control system. The flight control system can also be leveraged to adjust rotor control inputs to modify at least one of thrust, roll, pitch, or yaw of the multi-rotor aircraft.