Patent attributes
Provided are aspects relating to methods and computing devices for allocating computing resources and selecting hyperparameter configurations during continuous retraining and operation of a machine learning model. In one example, a computing device configured to be located at a network edge between a local network and a cloud service includes a processor and a memory storing instructions executable by the processor to operate a machine learning model. During a retraining window, a selected portion of a video stream is selected for labeling. At least a portion of a labeled retraining data set is selected for profiling a superset of hyperparameter configurations. For each configuration of the superset of hyperparameter configurations, a profiling test is performed. The profiling test is terminated, and a change in inference accuracy that resulted from the profiling test is extrapolated. Based upon the extrapolated inference accuracies, a set of selected hyperparameter configurations is output.