Patent attributes
A method for sequence-to-sequence prediction using a neural network model includes generating an encoded representation based on an input sequence using an encoder of the neural network model and predicting an output sequence based on the encoded representation using a decoder of the neural network model. The neural network model includes a plurality of model parameters learned according to a machine learning process. At least one of the encoder or the decoder includes a branched attention layer. Each branch of the branched attention layer includes an interdependent scaling node configured to scale an intermediate representation of the branch by a learned scaling parameter. The learned scaling parameter depends on one or more other learned scaling parameters of one or more other interdependent scaling nodes of one or more other branches of the branched attention layer.