Patent attributes
Aspects of the disclosure relate to training a machine learning model on a distributed computing system. The model can be trained using selected processors of the training platform. The distributed system automatically modifies the model for instantiation on each processor, adjusts an input pipeline to accommodate the capabilities of selected processors, and coordinates the training between those processors. Simultaneous processing at each stage can be scaled to reduce or eliminate bottlenecks in the distributed system. In addition, autonomous monitoring and re-allocating of resources can further reduce or eliminate bottlenecks. The training results may be aggregated by the distributed system, and a final model may then be transmitted to a user device.