Patent attributes
Embodiments herein describe techniques for static scheduling a neural network implemented in a massively parallel hardware system. The neural network may be scheduled using three different scheduling levels referred to herein as an upper level, an intermediate level, and a lower level. In one embodiment, the upper level includes a hardware or software model of the layers in the neural network that establishes a sequential order of functions that operate concurrently in the hardware system. In the intermediate level, identical processes in the functions defined in the upper level are connected to form a systolic array or mesh and balanced data flow channels are used to minimize latency. In the lower level, a compiler can assign the operations performed by the processing elements in the systolic array to different portions of the hardware system to provide a static schedule for the neural network.