Patent 12096554 was granted and assigned to Xerox on September, 2024 by the United States Patent and Trademark Office.
The present disclosure is directed to a hybrid conductive ink including: silver nanoparticles and eutectic low melting point alloy particles, wherein a weight ratio of the eutectic low melting point alloy particles and the silver nanoparticles ranges from 1:20 to 1:5. Also provided herein are methods of forming an interconnect including a) depositing a hybrid conductive ink on a conductive element positioned on a substrate, wherein the hybrid conductive ink comprises silver nanoparticles and eutectic low melting point alloy particles, the eutectic low melting point alloy particles and the silver nanoparticles being in a weight ratio from about 1:20 to about 1:5; b) placing an electronic component onto the hybrid conductive ink; c) heating the substrate, conductive element, hybrid conductive ink and electronic component to a temperature sufficient i) to anneal the silver nanoparticles in the hybrid conductive ink and ii) to melt the low melting point eutectic alloy particles, wherein the melted low melting point eutectic alloy flows to occupy spaces between the annealed silver nanoparticles, d) allowing the melted low melting point eutectic alloy of the hybrid conductive ink to harden and fuse to the electronic component and the conductive element, thereby forming an interconnect. Electrical circuits including conductive traces and, optionally, interconnects formed with the hybrid conductive ink are also provided.