Patent attributes
A property vector representing extractable measurable properties, such as musical properties, of a file is mapped to semantic properties for the file. This is achieved by using artificial neural networks “ANNs” in which weights and biases are trained to align a distance dissimilarity measure in property space for pairwise comparative files back towards a corresponding semantic distance dissimilarity measure in semantic space for those same files. The result is that, once optimised, the ANNs can process any file, parsed with those properties, to identify other files sharing common traits reflective of emotional-perception, thereby rendering a more liable and true-to-life result of similarity/dissimilarity. This contrasts with simply training a neural network to consider extractable measurable properties that, in isolation, do not provide a reliable contextual relationship into the real-world.