A flat panel display is provided. The flat panel display includes a silicon light-emitting device panel having a two-dimensional array of silicon light-emitting devices formed on an n- or p-type silicon-based substrate, and a fluorescent layer formed on the front surface of the silicon light-emitting device panel and emitting visible light after being excited by light emitted from the silicon light-emitting devices, wherein each of the silicon light-emitting devices comprises: a doping region formed on a surface of the substrate in such a way that the substrate is doped with a predetermined dopant of the opposite type to the substrate to a depth so that recombination of electron-hole pairs by quantum confinement effect at a p-n junction leads to light emission; and electrodes patterned on the substrate to allow the silicon light-emitting devices to emit light according to an image signal. The flat panel display includes the low-priced silicon light-emitting device panel having a two dimensional array of the silicon light-emitting devices formed on the inexpensive silicon-based substrate through series semiconductor manufacture processes. Therefore, the flat panel display can be manufactured at low cost. Furthermore, unlike a plasma display panel, a high voltage or a gas sealing process for discharge is not required, thereby increasing stability and reliability.