Patent attributes
A method for producing a superconductive element, in particular a multifilament wire, starting from a composite (1) comprising a bronze matrix containing Cu and Sn, in which at least one elongated structure containing Nb or an Nb alloy, in particular NbTa, is embedded, whereby in a first step the composite is extruded at a temperature between 300° C. and 750° C., followed by cold or hot working and annealing steps in which the composite is elongated in parallel to the elongated structure and softened by a temperature treatment (=“intermediate annealing”), followed by a stacking step, in which a multitude of elongated composites from the preceding cold or hot working steps are bundled, the steps of extruding, elongating, annealing and stacking being repeated one or more times, followed by a final elongating process, including intermediate annealing processes, in which the composite is elongated to its final length, the superconductive phase being obtained by a heat treatment including a solid state diffusion reaction is characterized in that at least part of the elongating steps and annealing steps are performed by cold working preceded by an intermediate annealing between 520° C. and 750° C., i.e. above the normal Cu—Sn recrystallization temperature, and by a fast cooling within less than 30 s to 100° C. or below (=“Rapid Intermediate Quenching” [RIQ]).