Patent attributes
An exemplary method for computing correlation anomaly scores, including, defining a first similarity matrix for a target run of data, the target run of data includes an N number of sensors, defining a second similarity matrix for a reference run of data, the target run of data includes the N number of sensors, developing a k-neighborhood graph Ni of the i-th node for the target run of data, wherein the k-neighborhood graph of the i-th node is defined as a graph comprising the i-th node and its k-nearest neighbors (NN), developing a k-neighborhood graph Ni of the i-th node for the reference run of data, defining a probability distribution p(j|i), wherein p(j|i) is the probability that the j-th node becomes one of the k-NN of the i-th node, coupling the probability between the i-th node and the neighbors of the i-th node, determining an anomaly score of the i-th node, and determining whether the target run of data has changed from the reference run of data responsive to determining the anomaly score of the i-th node.