A thin film reflective screen includes a surface layer, a transmission layer, a diffusion layer and reflection layers, which are formed in a single screen, which has functions such as an image forming on a surface, scattering, transmission, diffusion, and reflection, which are duplicated by re-reflecting light such that an image signal of pixel unit of an electronic image projected from a DLP projector or an LCD projector is enlarged to increase definition and brightness of the image. A dark color layer is formed on the surface of the screen such that contrast of the image is increased during the diffusion and the reflection, and as a result, resolution of the image is increased by two to nine times.