Patent attributes
A magnet structure for particle acceleration includes at least two coils that include a continuous path of superconducting material [e.g., niobium tin (Nb3Sn) having an A15-type crystal structure] for electric current flow there through. The coils can be mounted in a bobbin, which together with the coils form a cold-mass structure. The coils are cooled to their superconducting temperatures via cryocoolers. Radial-tension members are coupled with the cold-mass structure to keep it centered, such that it remains substantially symmetrical about a central axis and is not pulled out of alignment by magnetic forces acting thereon. A wire can be wrapped around the coils, and a voltage can be applied thereto to quench the coils to prevent their operation of the coils in a partially superconducting condition, which may otherwise cause damage thereto. A magnetic yoke surrounds the cold-mass structure and includes a pair of poles that, in part, define an acceleration chamber there between. The inner surfaces of the poles have tapered profiles that establish a correct weak focusing requirement for ion and that reduce pole diameter by increasing energy gain versus radius. An integral magnetic shield is positioned about the yoke to contain magnetic fields emanating there from and can have a tortuous configuration to contain magnetic fields having a variety of orientations. The magnet structure can be very compact and can produce particularly high magnetic fields.