Patent attributes
A metastable, peritectic alloy contains nickel in addition to tantalum and, optionally, niobium and/or tungsten. The alloy typically contains between from about 60 to 70 weight percent nickel and between from about 30 to 40 weight percent tantalum. The alloy may be prepared by melting the nickel and tantalum and/or a tantalum-nickel alloy under an inert gas or under a vacuum to a temperature of approximately 1475° C. to about 1550° C. The molten metal is then poured through a ceramic nozzle fitted with gas jets to atomize the molten stream into small droplets. The metastable characteristics of the corrosion resistant alloy are attained due to the rapid solidification of the molten alloy during the atomization process. The metastable alloy may further be used as cermet binder wherein another metal or interstitial alloy is incorporated by communition and/or blending into the alloy. This provides a unique system of materials that will impart even higher oxidation resistance and/or chemical and/or wear resistance than the metastable alloy per se. Surface treatments, such as pulse laser, transferred arc plasma, etc. of the peritectic, metastable alloy further may serve to regenerate a surface containing the alloy which has been exposed to harsh environments.