Patent attributes
We describe the structure and method of formation of a STT MTJ or GMR MRAM cell element that utilizes transfer of spin torque as a mechanism for changing the magnetization direction of a free layer. The critical current is reduced by constructing the free layer as a lamination comprising two ferromagnetic layers sandwiching a coupling valve layer. When the Curie temperature of the coupling valve layer is above the temperature of the cell, the two ferromagnetic layers are exchange coupled in parallel directions of their magnetization. When the coupling valve layer is above its Curie temperature, it no longer exchange couples the layers and they are magnetostatically coupled. In the exchange coupled configuration, the free layer serves to store data and the cell can be read. In its magnetostatically coupled configuration, the cell can be more easily written upon because one of the layers can assist the spin torque transfer by its magnetostatic coupling. If the free layer is formed as a multi-layered lamination of N periodically repeating combinations of a ferromagnetic layer and a coupling valve layer, the critical current can be reduced by a factor of N.