Patent 8228657 was granted and assigned to University of Rochester on July, 2012 by the United States Patent and Trademark Office.
Embodiments of the invention are directed to apparatus, methods, and applications involving the actuation of a semi-insulative working fluid by electromechanical forces based on electrowetting-on-dielectric (EWOD) and liquid dielectrophoresis (liquid DEP) mechanisms that are controlled by the frequency, but not the magnitude, of an AC voltage (i.e., ‘frequency-addressable). In the various apparatus embodiments of the invention, a single, frequency-addressable electrode pair includes at least one electrode that has a spatially-varying dielectric coating thickness and thus a spatially-varying electrode gap wherein at least a portion of which a volume of a working fluid can stably reside under no influence of an applied voltage. In an exemplary aspect, a frequency-addressable, bistable apparatus includes at least one wider gap and one narrower gap associated, respectively, with a thicker and a thinner dielectric coating thickness of the electrode(s). The working fluid resides in only one of the at least two gap regions only under the influence of capillary force. A brief burst of AC voltage at a selected high frequency or low frequency will move the liquid from one gap region to another (and back) by one of an EWOD-based and a DEP-based force. In an alternative aspect, an analog apparatus has a continuous, spatially-varying electrode gap in which the dielectric coating thickness on the electrodes varies smoothly in an inverse manner. Various applications to a display device, fiber optic coupler and attenuator, controlled liquid volume dispensers, spotting arrays, well plate apparatus, and others are presented, along with control methods.