Patent attributes
A robotic system for steering a flexible needle during insertion into soft-tissue using imaging to determine the needle position. The control system calculates a needle tip trajectory that hits the desired target while avoiding potentially dangerous obstacles en route. Using an inverse kinematics algorithm, the maneuvers required of the needle base to cause the tip to follow this trajectory are calculated, such that the robot can perform controlled needle insertion. The insertion of a flexible needle into a deformable tissue is modeled as a linear beam supported by virtual springs, where the stiffness coefficients of the springs varies along the needle. The forward and inverse kinematics of the needle are solved analytically, enabling both path planning and correction in real-time. The needle shape is detected by image processing performed on fluoroscopic images. The stiffness properties of the tissue are calculated from the measured shape of the needle.