Patent attributes
Architecture that provides the integration of automatic speech recognition (ASR) and machine translation (MT) components of a full speech translation system. The architecture is an integrative and discriminative approach that employs an end-to-end objective function (the conditional probability of the translated sentence (target) given the source language's acoustic signal, as well as the associated BLEU score in the translation, as a goal in the integrated system. This goal defines the theoretically correct variables to determine the speech translation system output using a Bayesian decision rule. These theoretically correct variables are modified in practical use due to known imperfections of the various models used in building the full speech translation system. The disclosed approach also employs automatic training of these variables using minimum classification error (MCE) criterion. The measurable BLEU scores are used to facilitate the implementation of the MCE training procedure in a step that defines the class-specific discriminant function.