Patent attributes
A scalable statistical language understanding (SLU) system uses a fixed number of understanding models that scale across domains and intents (i.e. single vs. multiple intents per utterance). For each domain added to the SLU system, the fixed number of existing models is updated to reflect the newly added domain. Information that is already included in the existing models and the corresponding training data may be re-used. The fixed models may include a domain detector model, an intent action detector model, an intent object detector model and a slot/entity tagging model. A domain detector identifies different domains identified within an utterance. All/portion of the detected domains are used to determine associated intent actions. For each determined intent action, one or more intent objects are identified. Slot/entity tagging is performed using the determined domains, intent actions, and intent object detector.