Patent attributes
Examples of the present disclosure describe generation of a multi-arc confusion network to improve, for example, an ability to return alternatives to output generated. A confusion network comprising token representations of lexicalized hypotheses and normalized hypotheses is generated. Each arc of the confusion network represents a token of a lexicalized hypothesis or a normalized hypothesis. The confusion network is transformed into a multi-arc confusion network, wherein the transforming comprising realigning at least one token of the confusion network to span multiple arcs of the confusion network. Other examples are also described.