Patent attributes
A deep structured semantic module (DSSM) is described herein which uses a model that is discriminatively trained based on click-through data, e.g., such that a conditional likelihood of clicked documents, given respective queries, is maximized, and a condition likelihood of non-clicked documents, given the queries, is reduced. In operation, after training is complete, the DSSM maps an input item into an output item expressed in a semantic space, using the trained model. To facilitate training and runtime operation, a dimensionality-reduction module (DRM) can reduce the dimensionality of the input item that is fed to the DSSM. A search engine may use the above-summarized functionality to convert a query and a plurality of documents into the common semantic space, and then determine the similarity between the query and documents in the semantic space. The search engine may then rank the documents based, at least in part, on the similarity measures.