Patent attributes
Presented are systems and methods that provide a unified end-to-end detection pipeline for object detection that achieves impressive performance in detecting very small and highly overlapped objects in face and car images. Various embodiments of the present disclosure provide for an accurate and efficient one-stage FCN-based object detector that may be optimized end-to-end during training. Certain embodiments train the object detector on a single scale using jitter-augmentation integrated landmark localization information through joint multi-task learning to improve the performance and accuracy of end-to-end object detection. Various embodiments apply hard negative mining techniques during training to bootstrap detection performance. The presented are systems and methods are highly suitable for situations where region proposal generation methods may fail, and they outperform many existing sliding window fashion FCN detection frameworks when detecting objects at small scales and under heavy occlusion conditions.