Patent attributes
Engineered nucleases (e.g., zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and others) are promising tools for genome manipulation and determining off-target cleavage sites of these enzymes is of great interest. We developed an in vitro selection method that interrogates 1011 DNA sequences for their ability to be cleaved by active, dimeric nucleases, e.g., ZFNs and TALENs. The method revealed hundreds of thousands of DNA sequences, some present in the human genome, that can be cleaved in vitro by two ZFNs, CCR5-224 and VF2468, which target the endogenous human CCR5 and VEGF-A genes, respectively. Our findings establish an energy compensation model of ZFN specificity in which excess binding energy contributes to off-target ZFN cleavage and suggest strategies for the improvement of future nuclease design. It was also observed that TALENs can achieve cleavage specificity similar to or higher than that observed in ZFNs.