Patent attributes
A computing device predicts an event or classifies an observation. A trained labeling model is executed with unlabeled observations to define a label distribution probability matrix used to select a label for each observation. Unique combinations of observations selected from the unlabeled observations are defined. A marginal distribution value is computed from the label distribution probability matrix. A joint distribution value is computed between observations included in each combination. A mutual information value is computed for each combination as a combination of the marginal distribution value and the joint distribution value computed for the respective combination. A predefined number of observation vector combinations is selected from the combinations that have highest values for the computed mutual information value. Labeled observation vectors are updated to include each observation vector included in the selected observation vector combinations with a respective obtained label.