Patent attributes
A computing device predicts occurrence of an event or classifies an object using distributed unlabeled data. Supervised data that includes a labeled subset of a plurality of observation vectors is identified. A total number of threads that will perform labeling of an unlabeled subset of the plurality of observation vectors is determined. The identified supervised data is uploaded to each thread of the total number of threads. Unlabeled observation vectors are randomly select from the unlabeled subset of the plurality of observation vectors to allocate to each thread of the total number of threads. The randomly selected, unlabeled observation vectors are uploaded to each thread of the total number of threads based on the allocation. The value of the target variable for each observation vector of the unlabeled subset of the plurality of observation vectors is determined based on a converged classification matrix and output to a labeled dataset.