Patent attributes
A method, computer readable medium, and system are disclosed for implementing a temporal ensembling model for training a deep neural network. The method for training the deep neural network includes the steps of receiving a set of training data for a deep neural network and training the deep neural network utilizing the set of training data by: analyzing the plurality of input vectors by the deep neural network to generate a plurality of prediction vectors, and, for each prediction vector in the plurality of prediction vectors corresponding to the particular input vector, computing a loss term associated with the particular input vector by combining a supervised component and an unsupervised component according to a weighting function and updating the target prediction vector associated with the particular input vector.