Patent attributes
Digital approximate squarer (aSQR)s utilizing apparatuses, circuits, and methods are described in this disclosure. The disclosed aSQR methods can operate asynchronously and or synchronously. For applications where low precisions is acceptable, fewer interpolations can yield less precise square approximation, which can be computed faster and with lower power consumption. Conversely, for applications where higher precision are required, more interpolations steps can generate more precise square approximation. By utilizing the disclosed aSQR method, precision objectives of a squarer approximation function can be programmed real-time and on the fly, which enables optimizing for power consumption and speed of squaring, in addition to optimize for the approximate squarer's die size and cost.