Patent 11468289 was granted and assigned to Zapata Computing on October, 2022 by the United States Patent and Trademark Office.
A method for training an adversarial generator from a data set and a classifier includes: (A) training a classical noise generator whose input includes an output of a quantum generator, the classical noise generator having a first set of parameters, the training comprising: sampling from the data set to produce a first sample and a first corresponding label for the first sample; producing an output of the classical noise generator based on the output of the quantum generator and the first sample; producing a noisy example based on the output of the classical noise generator and the first sample; providing the noisy example to the classifier to produce a second corresponding label for the first sample; updating the first set of parameters such that the first corresponding label of the first sample differs from the second corresponding label of the first sample.