Patent attributes
An acoustic waveguide having high-Q resonator characteristics is disclosed and a fabrication method is described. Various waveguide-based test-vehicles, implemented in single crystal silicon and transduced by thin aluminum nitride films, are demonstrated. Silicon resonators with type-I and type-II dispersion characteristics are presented to experimentally justify the analytical mode synthesis technique for realization of high quality-factor silicon Lamb wave resonators. An analytical design procedure is also presented for geometrical engineering of the waveguides to realize high-Q resonators without the need for geometrical suspension through narrow tethers or rigid anchors. The effectiveness of the dispersion engineering methodology is verified through development of experimental test-vehicles in 20 μm-thick single-crystal silicon (SCS) waveguides with 500 nm aluminum nitride transducers.